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Australia
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Abstract. A covariant spinor representation ofiosp(d, 2/2) is constructed for the quantization
of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this
representation can be identified with the state space arising from the canonical extended BFV-BRST
quantization of the spinning particle with admissible gauge fixing conditions after a contraction
procedure. For this model, the cohomological determination of physical states can thus be obtained
purely from the representation theory of theiosp(d, 2/2) algebra.

1. Introduction and main results

In recent work the question of the ‘super-algebraization’ of the Hamiltonian BRST-BFV [1–3]
extended phase space quantization for gauge systems has been examined [4, 7]. Specifically,
following earlier indications along these lines in the literature [8], it has been claimed
that there are natural spacetime ‘quantization superalgebras’ which possess representations
precisely mirroring the BRST-BFV construction in certain cases, namely relativistic particle
systems and generalizations thereof, for which the relevant spacetime supersymmetries are
the superconformal algebraosp(d, 2/2) and its inhomogeneous extension [4–6], or the family
D(2, 1;α) of exceptional superalgebras, in the(1 + 1)-dimensional case [7].

In a previous work on the scalar particle [4], supersymmetry was realized using the
method of produced superalgebra representations. In the present paper this programme is
continued with the examination of the covariant BRST-BFV quantization of the spinning
particle model via a spin representation ofiosp(d, 2/2), and the sharpening of previous
work via a covariant tensor notation for this extended spacetime supersymmetry. Our specific
results, to be elaborated in the remainder of the paper, are as follows. In section 2, a space
of covariant spinor superfields carrying an appropriate spin representation ofiosp(d, 2/2) is
introduced, and its structure studied. The generatorsJMN of osp(d, 2/2) have orbital and
spin components, associated respectively with standard configuration space coordinates and
differentialsXM,PM = ∂M , and an extended (graded) Clifford algebra with generators0N
entailing both fermionic and bosonic oscillators. The mass-shell conditionP · P −M2 = 0
factorizes, allowing the Dirac condition0·∂−M = 0 to be covariantly imposed at the(d+2/2)-
dimensional level, effecting a decomposition of the representation space. At the same time, the
Dirac wavefunctions split into upper and lower components, so that theiosp(d, 2/2) algebra
is effectively realized on 2d/2-dimensional Dirac spinors (overxM , and subject to a certain
differential constraint onP−, deriving from the mass-shell condition).
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In section 3 a ‘BRST operator’� is named as one of the nilpotent odd generators
of the homogeneous superalgebra (a ‘super-boost’ acting between fermionic and light
cone directions), relative to a choice of ‘ghost number’ operator within thesp(2) sector.
Correspondingly a ‘gauge fixing fermion’F of opposite ghost number is identified (a
‘supertranslation’ generator), and physical HamiltonianH = −{F, �}. Finally, the
cohomology of� is constructed at arbitrary ghost number. It is found that the ‘physical states’
thus defined are precisely those wavefunctions which obey the conventional((d − 1) + 1)-
dimensional Dirac equation, and moreover which have a fixed degree of homogeneity in
the light cone coordinatep+. Given that theP− constraint already dictates the evolution
of the Dirac spinors in the light cone timex− = η−+x+, the analysis thus reveals that this
‘superalgebraization’ of the BRST-BFV quantization yields the correct spin-1

2 irreducible
representation of the Poincaré algebra in(d − 1) + 1 dimensions, as carried on the space
of covariant solutions of the massive Dirac equation.

As this construction has been obtained purely algebraically, without the use of a physical
model, it is finally the task of section 4 to establish that the standard Hamiltonian BRST-BFV
ansatz, applied to the spinning particle model [8–13], does indeed give rise to an identical state
space structure. The only proviso on this statement turns out to be that the model’s extended
phase space should formally be modified by a contraction, or ‘β-limit’ [14] in order to identify
the appropriate sector of the full phase space (for details see section 4.2).

In conclusion, the import of our programme, exemplified by the present case study, is
an approach to covariant quantization of models with gauge symmetries via a cohomological
realization of the appropriate space of irreducible representations of physical states (in the
case of particle models on flat spacetime, the Poincaré algebra) through the construction of the
correct BRST complex (in the present cases, as realized within the covariant representations
of the ‘quantization superalgebras’osp(d, 2/2) and generalizations). Further concluding
remarks, and prospects for future work, are given in section 5.

2. Covariant representations ofiosp(d, 2/2)

2.1. Introduction and notation

Theiosp(d, 2/2) superalgebra is a generalization ofiso(d, 2). The supermetricηMN we shall
use throughout is made up of three parts; the first has block diagonal form with the entries
being the Minkowski metric tensor ofso(d, 1) with −1 occurringd times,

ηµν = diag(1,−1,−1, . . . ,−1).

The second part is off-diagonal and can be written

ηab =
(

0 1
1 0

)
wherea, b = ±, reflecting a choice of light cone coordinates in two additional bosonic
dimensions, one spacelike and one timelike.

The final part corresponds to the Grassmann odd components and is the symplectic metric
tensor

ηαβ = εαβ =
(

0 1
−1 0

)
.

Here Greek indicesα, β, . . . take values 1, 2, whilst λ,µ, ν, . . . take values in the range
0, . . . , d−1, and Latin indicesa, b, c, . . . range over 0, . . . d−1,+,−. The indicesM,N, . . .
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cover all values, and thus run over 0, . . . , d−1,+,−, 1, 2. We also define graded commutator
brackets as

[[AM,BM ]] = AMBN − [MN ]BNAM
{[AM,BM ]} = AMBN + [MN ]BNAM

where the convention for the [MN ] sign factor is [MN ] = (−1)mn (extended to [MN ][NP ] =
(−1)mn+np as necessary). The grading factors arem, n = 0 for Minkowski and light
cone indicesµ, ν, . . . ,± andm, n = 1 for symplectic indicesα, β, . . . . With these index
conventions the metric thus obeysηMN = [MN ]ηNM .

We defineJMN = −[MN ]JNM as the generators of theosp(d, 2/2) superalgebra, with
commutation relations as follows [15]:

[[JMN, JPQ]] = −ηNQJMP + [NP ]ηNP JMQ − [MN ][MP ]ηMP JNQ
+[PQ][MN ][MQ]ηMQJNP . (1)

The homogeneous even subalgebra isso(d, 2)⊕ sp(2,R) with so(d, 2) generated byJµν =
−Jνµ, andsp(2,R) by Jαβ = Jβα. For clarity, we setJαβ ≡ Kαβ = Kβα. Likewise, the odd
generators will be denotedJµα ≡ Lµα or Jα± ≡ Lα±. The inhomogeneous parti(d, 2/2)
consists of additional (super)translation generatorsPM satisfying

[[JMN, PL]] = ηLNPM − [MN ]ηLMPN. (2)

Thed + 2 even translations arePµ, P± acting in the(d, 2) pseudo-Euclidean space, and the
two odd nilpotent supertranslations arePα ≡ Qα.

We consider a class of covariant spinor superfield representations ofiosp(d, 2/2)
(cf [4, 16]) acting on suitable spinor wavefunctions9(xM) over (d + 2/2)-dimensional
superspace†,(B ⊗ F ⊗ S).

Theosp(d, 2/2) generators can be more explicitly written as

JMN = J LMN + J SMN (3)

where the orbital part is defined

J LMN = XM∂N − [MN ]XN∂M (4)

with

∂N = PN = ∂

∂XN
=
(

∂

∂Xµ
,
∂

∂X±
,
∂

∂Xα

)
.

The spin part of (3) is

J SMN = 1
4[[0M,0N ]] (5)

where0M,0N are generalized Dirac matrices. Of course bothJ L andJ S fulfil the osp(d, 2/2)
algebra.

The graded Clifford algebra with generators0N , acting on the space‡(B⊗F), is defined
through

{[0M,0N ]} = 0M0N + [MN ]0N0M = 2[MN ]ηMN (6)

† S denotes the superfields over(d + 2/2)-dimensional superspace(xM) = (xµ, x±, θα), while B ⊗ F carries the
graded Clifford algebra (see below).
‡ B is the bosonic part which carries the representation ofζα (see below), while the fermionicF carries the
representation of the Dirac algebraγµ, γ± andγ5.
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(if M 6= N then we can write0M0N = −[MN ]0N0M ). Writing the0 in compact form as
0M = (0µ, 0+, 0−, 0α)T , we have

0µ = 1⊗ γ̂µ ⊗ 1

0± = 1⊗ γ̂± ⊗ 1

0α = ζα ⊗ γ̂5⊗ (−1)z
(7)

where

γ̂µ =
(
γµ 0
0 −γµ

)
γ̂+ =

√
2

(
0 0
1 0

)
γ̂− =

√
2

(
0 1
0 0

)
γ̂5 =

(
γ5 0
0 −γ5

) (8)

(−1)z is the parity operator for theθ and is such that(−1)zθα = −θα; (−1)zθαθβ = θαθβ , and
is defined such thatz ≡ θα∂α; γ5 is defined such thatγ 2

5 = κ5(= ±1).
The definition ofJ Sαβ leads to

4J Sαβ = [[0α, 0β ]] = ζαγ5ζβγ5(−1)2z
(

1 0
0 1

)
+ ζβγ5ζαγ5(−1)2z

(
1 0
0 1

)
= κ5{ζα, ζβ}

(
1 0
0 1

)
. (9)

Moreover,{[0α, 0β ]} = −2εαβ and so we take

[ζα, ζβ ] = −2κ5εαβ. (10)

In the appendix we provide a realization ofζα (with κ5 = 1) in terms of a pair of bosonic
oscillators with indefinite metric.

From (1), (2) it is easy to establish the invariance of the square of the momentum operator,
namely

[[JMN, P
RPR]] = (δRNPM − [MN ]δRMPN) + PR[MR][RN ](ηRNPM − [MN ]ηRMPN)

= 0. (11)

Thus the second-order Casimir is

PMPM ≡ PµPµ +QαQα. (12)

Similarly we get the required generalization of the Pauli–Lubanski operator
[JMN,WABCWCBA] = 0, providing a fourth-order Casimir operator. For any vector operator
VA we have

[JMN, VA] = ηAMVN − [MN ]ηANVM (13)

and similarly for any tensor operatorVAB, VABC : for example,

[JMN, VABC ] = ηAMVNBC − [MN ]ηANVMBC + [MA][AN ](ηBMVANC
−[MN ]ηBNVAMC) + [MA][AN ][MB][BN ](ηCMVABN − [MN ]ηCNVABM).

(14)

From this we can calculate

[JMN, V
ABCVCBA] = ηADηBEηCF [JMN, VDEFVCBA] = 0. (15)

If we defineVABC = WABC = PAJBC + [BC][CA]PCJAB + [BA][AC]PBJCA we get the
required identity.
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2.2. Dirac condition and reduced realization ofiosp(d, 2/2) superalgebra

In order to project out irreducible representations of the full superalgebra, we require the
mass-shell condition (Klein–Gordon equation): in representation terms, a requirement for
reducibility of theiosp(d, 2/2) representation

(PMηMNP
N −M2)9 = 0. (16)

However, using the Clifford algebra just defined we have [[JMN, 0
LPL]] = 0 and so we can

covariantly impose the stronger Dirac condition,

0= (PMηMNPN −M2)

= (PM0M +M)(PM0M −M)

i.e., taking for example the positive root,

(PM0M −M)9 = 0. (17)

We now construct the explicit forms of the generatorsJMN of iosp(d, 2/2) within this
decomposition of the full space. Expanding the sum in (17) gives

(0µPµ + 0+P+ + 0−P− + 0αQα −M)9 = 0

or, in the explicit form, writing9 as a two-component array9 =
(

ψ√
2φ

)
, gives(

γ µPµ + ζ α(−1)zγ5Qα −M
√

2P+√
2P− −[γ µPµ + ζ α(−1)zγ5Qα +M]

)(
ψ√
2φ

)
= 0.

From this, we get the rather useful expression

φ = − 1

2P+
(γ µPµ + ζ α(−1)zγ5Qα −M)ψ (18)

and soP− can be written

P−ψ = − 1

2P+
(γ µPµ + ζ α(−1)zγ5Qα +M)(γ νPν + ζ β(−1)zγ5Qβ −M)ψ. (19)

Simplifying this equation yields

P−ψ = − 1

2P+
(P 2 +Qαε

βαQβκ5−M2)ψ

= − 1

2P+
(P 2 +QαQακ5−M2)ψ (20)

which we shall later use as the Hamiltonian. This equation is basically the Klein–Gordon
equation (see equation (16)) of the BFV quantized spinning relativistic particle model which
will carry the representation.

We are now in a position to explicitly determine the generators ofosp(d, 2/2). We show
below the process for calculatingJα−, and then state without proof all other terms, with the
understanding that the same process is repeated for each.

We haveJα− = J Lα− + J Sα−, whereJ Lα− = XαP− −X−Pα and

J Sα− = 1
4[[0α, 0−]] = 1

20α0−

= 1

2

(
ζαγ5(−1)z 0

0 −ζαγ5(−1)z

)(
0
√

2
0 0

)
=
(

0 1√
2
ζαγ5(−1)z

0 0

)
(21)
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and so

Jα−9 =
(
XαP− −X−Pα 1√

2
ζαγ5(−1)z

0 −XαP− +X−Pα

)(
ψ√
2φ

)
=
(
(XαP− −X−Pα)ψ + ζαγ5(−1)zφ
−(XαP− −X−Pα)

√
2φ

)
.

Substituting in from equation (18) gives

Jα− = XαP− −X−Pα − ζα

2P+
(γ5(−1)zγ · P + γ5(−1)zζ β(−1)zγ5Pβ − γ5(−1)zM)

= XαP− −X−Pα − ζαζ− (22)

where

ζ− = 1

2P+
(γ5(−1)zγ · P + ζ βκ5Pβ − γ5(−1)zM). (23)

The remaining generators are

Jµ− = XµP− −X−Pµ − ζµζ− Jµα = XµPα −XαPµ + κ5
2 ζµζα

Jµν = XµPν −XνPµ − κ5
4 [ζµ, ζν ] J+µ = X+Pµ −XµP+

J+α = X+Pα −XαP+ Jαβ = XαPβ +XβPα + κ5
4 {ζα, ζβ}

J+− = X−P+ −X+P− − 1
2

(24)

where we have defined

ζµ = γµγ5(−1)z

κ5
. (25)

From the above definition we can easily show that [ζµ, ζν ] = − 1
κ5

[γµ, γν ]. The non-zero
commutation relations betweenζ− and the remaining operators foriosp(d, 2/2) can be
calculated and are

{ζµ, ζ−} =
{[
γµγ5(−1)z

κ5
,

1

2P+
(γ5(−1)zγ · P + κ5ζ

βPβ − γ5(−1)zM)

]}
(26)

= 1

2κ5P+
{[γµγ5, γ5γ

νPν ]} −M
κ5
{[γµγ5, γ5]} (27)

= Pµ

P+
(28)

and

{γ5, ζ−} = −κ5(−1)z

P+
M {ζ−, ζ−} = P−

P+
[X−, ζ−] = − ζ−

P+

[Xµ, ζ−] = − κ5

2P+
ζµ {Xα, ζ−} = −κ5ζβ

2P+
[ζ−, ζα] = −Qα

P+
.

(29)

In summary, the realization ofiosp(d, 2/2) that we use is formulated in terms of the
operatorsXµ, Pµ = ∂

∂xµ
, γµ, γ5, together withXα = θα, Pα = Qα = ∂

∂ϑα
, ζα, ζ−, and

X+ = τI , P− = H , P+, X−. The non-zero commutation relations amongst these variables are

[Xµ, Pν ] = −ηµν {θα,Qβ} = εαβ [X−, P+] = 1
[X−, P−] = −P−1

+ P− [θα, P−] = P−1
+ Qα [Xµ, P−] = P−1

+ Pµ
(30)

and

{ζµ, ζν} = −2κ5ηµν [ζα, ζβ ] = −2κ5εαβ. (31)

Note in the above thatX+ andP− are no longer canonically conjugate when acting on theψ

part of the superfield.
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We have now calculated the complete set of non-zero commutation relations between the
operatorsXM,PN, ζM, γ5 and have shown that they do indeed provide the correct realization
of iosp(d, 2/2) on theψ superfields. Remarkably,preciselythese operators will emerge as the
raw material in the extended BFV-BRST Hamiltonian quantization of the relativistic spinning
particle model (section 4 below). However, the algebraic setting already provides the means
to complete the cohomological construction of physical states, as we now show.

3. Physical states

The physical states of a system can be determined by looking at the action of the BRST operator
� and the ghost number operatorNgh upon arbitrary statesψ,ψ ′. As is well known [14], the
physical states obey the equations

�ψ = 0 ψ 6= �ψ ′ and Nghψ = `ψ
for some eigenvaluè, where� is the BRST operator, andNgh is the ghost number. Therefore,
in order to determine the physical states we shall fix� andNgh, and determine their actions
upon an arbitrary spinor-valued superfieldψ .

Take twoc-numbersp(2) spinorsηα, η′α with the following relations:

ηαηα = 0= η′αη′α
ηαη′α = 1= −η′αηα. (32)

An example of two such spinors is

η = 1√
2

(
1
1

)
η′ = 1√

2

(−1
1

)
. (33)

Below in the superfield expansions we use

θη = ηαθα θ ′η = η′αθα
χη = ηβχβ χ ′η = η′βχβ.

(34)

The first of these pairs of definitions leads to

∂

∂θα
= ∂θη

∂θα

∂

∂θη
+
θ ′η
∂θα

∂

∂θη′
= −ηα ∂

∂θη
− η′α

∂

∂θ ′η

and therefore

ηα
∂

∂θα
= − ∂

∂θ ′η
and η′α

∂

∂θα
= −η′αηα ∂

∂θη
= ∂

∂θη
. (35)

Choose the BRST operator† and gauge fixing operator as

� = ηαLα−
F = η′αPα

(36)

and consistently the ghost number operatorNgh ≡ ηαη′βKαβ satisfies

[Ngh, �] = � and [Ngh,F ] = −F
as required.

† The corresponding anti-BRST operator is�̄ = η′αLα−.
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3.1. Action of ghost number operator

Note that in our case

Ngh = η1η′1K11 + η1η′2K12 + η2η′2K22 + η2η′1K21 = − 1
2(K11−K22).

Kαβ can be writtenKαβ = KS
αβ +KL

αβ where the two parts denote the bosonic and fermionic
(spin and orbital) contributions, respectively. This leads toNgh having two parts as well:

KL
αβ = θα

∂

∂θβ
+ θβ

∂

∂θα
(37)

therefore

NL
gh = θη

∂

∂θη
− θ ′η

∂

∂θ ′η
(38)

and for the bosonic sector

KS
αβ = 1

4[[0α, 0β ]] = 1
4{ζα, ζβ}κ5 (39)

therefore

NS
gh =

κ5

4
((η · ζ )(η′ · ζ ) + (η′ · ζ )(η · ζ ))

= κ5

2
(η · ζ )(η′ · ζ ) +

κ5

4
= κ5

2
(η′ · ζ )(η · ζ )− κ5

4
. (40)

As seen in the appendix, we can write a series expansion of an arbitrary spinor superfield
ψ over(xµ, x±, θα) in an occupation number basis in the indefinite metric space acted on by
ζα,

ψ =
∞∑

m,n=0

ψ(m,n)|m, n〉 =
∞∑

m,n=0

(A(m,n) + θγ χ(m,n)γ + 1
2θ

2B(m,n))|m, n〉 (41)

= A + θαχα + 1
2θ

2B.

We can rewrite this series expansion with respect to the spinors (32) as follows:

θαχα = θαδβαχβ,= θα(ηβη′α − ηαη′β)χβ
= θηχ ′η − θ ′ηχη (42)

and
1
2θ

2 = 1
2θ

αεαβθ
β = 1

2θ
α(ηαη

′
β − ηβη′α)θβ

= 1
2(θηθ

′
η − θ ′ηθη) = θηθ ′η. (43)

Thus, using equations (42) and (43),

ψ(m,n) = A(m,n) + θηχ
′(m,n)
η − θ ′ηχ(m,n)η + θηθ

′
ηB

(m,n). (44)

In what follows, the occupation number labels in the bosonic space will be suppressed,
whereas the structure of the explicit superfield expansion will be needed. Thus, for example,
A ≡∑∞m,n=0A

(m,n). Note that

NL
ghA = 0 NL

gh(θηχ
′
η) = θηχ ′η

NL
gh(θηθ

′
ηB) = 0 NL

gh(−θ ′ηχη) = θ ′ηχη
(45)

and so

Nghψ = 1

2

(
κ5(η · ζ )(η′ · ζ ) +

κ5

2

)
A +

1

2
θη

(
κ5(η · ζ )(η′ · ζ ) +

κ5 + 4

2

)
χ ′η

−1

2
θ ′η

(
κ5(η · ζ )(η′ · ζ ) +

κ5− 4

2

)
χη +

1

2
θηθ
′
η

(
κ5(η · ζ )(η′ · ζ ) +

κ5

2

)
B.

(46)
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We demand thatNghψ = `ψ for some eigenvaluè, therefore we can write

κ5(
1
2(η · ζ )(η′ · ζ ) + 1

4)A = `A
i.e.

κ5(η · ζ )(η′ · ζ )A =
(

4`− κ5

2

)
A. (47)

Similarly

κ5(η · ζ )(η′ · ζ )χ ′η =
(

4`− κ5− 4

2

)
χ ′η (48)

κ5(η · ζ )(η′ · ζ )χη =
(

4`− κ5 + 4

2

)
χη (49)

κ5(η · ζ )(η′ · ζ )B =
(

4`− κ5

2

)
B. (50)

In the appendix the diagonalization of(η · ζ )(η′ · ζ ) is carried out explicitly in the occupation
number basis{|m, n〉}. Below we assume that suitable eigenstates can be found, and explore
the consequences for the cohomology of the BRST operator at generic ghost number`.

3.2. Action of BRST operator

The BRST charge is defined above as� = ηαLα− and from section 2.2 we can write

Lα− = θαP− −X− ∂

∂θα
− ζαζ−. (51)

We have previously (23) definedζ− and can write it asζ− = 1
2P+
(D5(−1)z + κ5ζ

βPβ), where
D5 = γ5(γ · P −M) is the Dirac operator multiplied byγ5. Consequently,

ηαζαζ− = ηαζα

2P+
(D5(−1)z + κ5ζ

βPβ)

= ηαζα(−1)zD5

2P+
+ κ5

(η · ζ )(ζ β ∂
∂θβ
)

2P+
. (52)

The second part of equation (52) can be further expanded as follows:

ζ β
∂

∂θβ
= ζγ ∂

∂θβ
εβγ = ζγ ∂

∂θβ
(−ηβη′γ + ηγ η′β) (53)

which uses the identityεβα = (−ηβη′α + ηαη′β). Therefore,

(η · ζ )(ζ β ∂
∂θβ
)

2P+
= 1

2P+
(η · ζ )(η′ · ζ ) ∂

∂θ ′η
+

1

2P+
(η · ζ )2 ∂

∂θη
(54)

and so we can write

ηαζαζ− = ηαζα(−1)zD5

2P+
+
κ5

2P+
(η · ζ )(η′ · ζ ) ∂

∂θ ′η
+
κ5

2P+
(η · ζ )2 ∂

∂θη
. (55)

In a similar fashion we can expand the fermionic part ofLα− as follows:

ηαLLα− = ηαθαP− − ηαX−
∂

∂θα
= θηP− +

∂

∂θ ′η
X−

and

P− = −1

2P+
((P 2 −M2) +QαQα)



8516 P D Jarvis et al

but

εβαQαQβ = QαQα = (−ηαη′β + ηβη′α)
∂

∂θα

∂

∂θβ

= −2
∂

∂θη

∂

∂θ ′η

therefore

P− = −1

2P+

(
(P 2 −M2) + 2

∂

∂θη

∂

∂θ ′η

)
. (56)

The BRST operator can thus be written

� = ηαLα− = −θη P
2 −M2

2P+
− θη

P+

∂

∂θη

∂

∂θ ′η
+
∂

∂θ ′η
X−

−η
αζα(−1)zD5

2P+
− κ5

(η · ζ )(η′ · ζ )
2P+

∂

∂θ ′η
− κ5

(η · ζ )2
2P+

∂

∂θη
. (57)

By writingψ as a series expansion to second order (equation (44)), we can determine the effect
of � onψ . For simplicity we shall write the effect of each term of� onψ separately.
1st term:

−θη P
2 −M2

2P+
ψ = −θη P

2 −M2

2P+
A + θηθ

′
η

P 2 −M2

2P+
χη.

2nd term:

− θη
P+

∂

∂θη

∂

∂θ ′η
ψ = 2θηB

2P+
.

3rd term:

∂

∂θ ′η
X−ψ = −X−χη − θηX−B.

4th term:

−η
αζα(−1)zD5

2P+
ψ = −(η · ζ ) D5

2P+
A + θη(η · ζ ) D5

2P+
χ ′η

−θ ′η(η · ζ )
D5

2P+
χη − θηθ ′η(η · ζ )

D5

2P+
B.

5th term:

−κ5
(η · ζ )(η′ · ζ )

2P+

∂

∂θ ′η
ψ = κ5

2P+
(η · ζ )(η′ · ζ )χη + κ5

θη

2P+
(η · ζ )(η′ · ζ )B.

6th term:

−κ5
(η · ζ )2

2P+

∂

∂θη
ψ = − κ5

2P+
(η · ζ )2χ ′η − κ5θ

′
η −

θ ′η
2P+

(η · ζ )2B.

Grouping�ψ with respect to coefficients ofθη, θ ′η andθηθ ′η we can write

�ψ = C +Cθηθη +Cθ ′η θ
′
η +Cθηθ ′η θηθ

′
η (58)
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where we have

C = −X−χη − η · ζ D5

2P+
A +

κ5

2P+
(η · ζ )(η′ · ζ )χη − κ5

2P+
(η · ζ )2χ ′η (59)

Cθη = −
P 2 −M2

2P+
A +

B

P+
−X−B + η · ζ D5

2P+
χ ′η +

κ5

2P+
(η · ζ )(η′ · ζ )B (60)

Cθ ′η = −η · ζ
D5

2P+
χη − κ5(η · ζ )2 B

2P+
(61)

Cθηθ ′η =
P 2 −M2

2P+
χη − η · ζ D5

2P+
B. (62)

Notice the apparent similarity between equations (61) and (62); these can in fact be shown to
be a linear transformation of each other. Firstly, note that

D2
5 = γ5(γ · P −M)γ5(γ · P −M) = −κ5(P

2 −M2). (63)

Thus, we can write equation (62) as

Cθηθ ′η = −
D2

5

2κ5P+
χη − (η · ζ )D5

2P+
B

= − D5

κ5(η · ζ )
(
(η · ζ )D5

2P+
χη + κ5

(η · ζ )2
2P+

B

)
. (64)

Thus, it can be seen that equations (61) and (62) differ only by a factor of−D5/(κ5(η · ζ )).
Note that if

(η · ζ )D5

2P+
χη + κ5

(η · ζ )2
2P+

B = 0

then both equations (61) and (62) will be zero. It is interesting to note that a similar situation
exists in equations (59) and (60). The common component of these two equations is

D5

2P+
A + κ5

(η · ζ )
2P+

χ ′η.

Taking these similarities between the two pairs of equations into account we can redefine the
expansion ofψ as follows: rescaleχη andA by

χη ≡ χ̃η + (η · ζ ) D5

P 2 −M2
B (65)

A ≡ Ã + (η · ζ ) D5

P 2 −M2
χ ′η (66)

and soψ becomes

ψ =
(
Ã + (η · ζ ) D5

P 2 −M2
χ ′η

)
+ θηχ

′
η − θ ′η

(
χ̃η + (η · ζ ) D5

P 2 −M2
B

)
+ θηθ

′
ηB. (67)

Using this redefinition equation (61) becomes

Cθ ′η = −η · ζ
D5

2P+
χ̃η − (η · ζ )

2

2P+

D2
5

P 2 −M2
B − κ5

(η · ζ )2
2P+

B

= −η · ζ D5

2P+
χ̃η +

(η · ζ )2
2P+

κ5(P
2 −M2)

P 2 −M2
B − κ5

(η · ζ )2
2P+

B

= −η · ζ D5

2P+
χ̃η. (68)
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By enforcing�ψ = 0 we getCθ ′η = 0, which by (68) gives the Dirac equation

−η · ζ D5

2P+
χ̃η = 0. (69)

Similarly we can rewrite equation (62) as

Cθηθ ′η =
P 2 −M2

2P+
χ̃η = 1

κ5
D5(D5χ̃η) (70)

which, by enforcing�ψ = 0, leads to the Klein–Gordon equation

D2
5χ̃η = 0. (71)

Under the rescaling of equation (66), equation (59) becomes

C =
(
−X− +

κ5

2P+
(η · ζ )(η′ · ζ )

)
χη − (η · ζ ) D5

2P+
Ã + κ5

(η · ζ )2
2P+

χ ′η − κ5
(η · ζ )2

2P+
χ ′η (72)

and by substituting equation (49) into (72) we get

C =
(
−X− +

4`− κ5 + 4

4P+

)
χη − (η · ζ ) D5

2P+
Ã = 0. (73)

Similarly, using equations (66) and (50), (60) can now be written as

Cθη =
D2

5

2κ5P+
Ã−

(
X− − 4`− κ5 + 4

4P+

)
B = 0 (74)

where once again we have enforced the condition for physical states.
Defining the symbol

X̃− = X− − 4`− κ5 + 4

4P+
(75)

and multiplying equation (74) by(η · ζ ) D5
P 2−M2 and then subtracting it from equation (73) we

get

−X̃−
(
χη − (η · ζ ) D5

P 2 −M2
B

)
= 0. (76)

Substituting equation (65) into (76) gives the third equation of motion:

−X̃−χ̃η = 0. (77)

Finally, we identify the physical states at generic ghost number`, arising from the
cohomology of�, as the spinorsχ̃ , with the following properties. From (69), thẽχ
obey the usual massive Dirac equation. From (20), (56), theP− constraint dictates the
dependence of superfield components on light cone timeτ = x−, asP− = ∂/∂x−. Finally,
interpreting (76), (77) in thep+-representation (the Fourier transform of thex+-representation,
i.e.X− ≡ X+ = −∂/∂p+), theχ̃ are homogeneous functions ofp+ of degree−(+1− 1

4κ5 +`).
Thus theχ̃ are essentially only functions over((d − 1) + 1)-dimensional Minkowski space.
For example, in the caseκ5 = 1, ` = − 3

4 (which implies3 = 0), and using (A.16), we find
that the physical states have the following explicit form†:

|χ̃η〉 = χ̃η(xµ)[|0, 0〉 − |1, 1〉 + |2, 2〉 + · · · + (−1)m|m,m〉 + · · ·] (78)

in terms of the number states of the bosonic ghost sector (see the appendix), whereχ̃η(x
µ) are

ordinary functions ofxµ.

† 2̀ = − 3
2 is the canonical conformal dimension for a spinor field (see [17]).
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4. BRST-BFV quantization of the spinning particle andiosp(d, 2/2) structure

As is well known [14, 18], the BFV canonical quantization of constrained Hamiltonian
systems [1–3] uses an extended phase space description in which, to each first class constraint
φa, a pair of conjugate ‘ghost’ variables (of Grassmann parity opposite to that of the constraint)
is introduced. Here we follow this procedure for the spinning relativistic particle. Although our
notation is adapted to the massive case,M > 0, as would follow from the second-order action
corresponding to extremization of the proper length of the particle world line, an analysis of
the fundamentalHamiltonian description of the first-order action [14] leads to an equivalent
picture (with an additional mass parameterµ 6= 0 supplantingm in the appropriate equations,
and permittingm→ 0 as a smooth limit).

In either case, for the scalar or spinning particle the primary first class constraint is the
mass-shell conditionφ1 = (P 2 −M2), whereP 2 = PµηµνP

ν . Including the Lagrange
multiplier λ as an additional dynamical variable leads to a secondary constraint, reflecting
conservation of its conjugate momentumπλ. The quantum formulation should be consistent
with the equations of motion and gauge fixing at the classical level, as such two restrictions
are necessary so as to arrive at the particle quantization corresponding with the superalgebraic
prescription of section 2. Firstly, we choose below to work in the class [19–22]λ̇ = 0;
moreover, we take gauge fixing only to be with respect to gauge transformations in one
of the connectedcomponents of the group, i.e. either the identity class, or the orientation
reversing class characterized byτ ′ = τi + τf − τ . Thusλ will be quantized on the half-line
(sayR+), and the system is not modular invariant until the two distinctly oriented sectors
(particle and anti-particle) are combined [14]. Secondly, we takeφ

(2)
1 = λπλ as the other

secondary first class constraint (rather thanφ(2)1 = πλ used in the standard construction)†.
Finally, the spinning particle system also entails a second, Grassman odd first class constraint
φ2 = pµζµ+Mεγ5(ε = ±1), together with its associated first class constraintφ

(2)
2 = π(2)2 , the

conjugate momentum of the corresponding Lagrange multiplierλ2 (which is also Grassmann
odd).

4.1. BFV extended state space and wavefunctions

The BFV extended phase space [14] for the BRST quantization of the spinning relativistic
particle is taken to comprise the following canonical variables:

xµ(τ), pµ(τ), ζ
µ, ζ5, λ(τ ), πλ(τ ), λ2(τ ), π2(τ ), η

a(i), ρa(i), a i = 1, 2. (79)

xµ(τ), pµ(τ) are Grassmann even whilstζµ, ζ5 are Grassmann odd variables,λ is the
Grassmann even Lagrange multiplier corresponding to the even first class constraintφ1, πλ
is the momentum conjugate toλ (which forms the constraintφ(2)1 ), λ2 is the odd Lagrange
multipler corresponding to the Grassmann odd first class constraintφ2, andφ(2)2 = π

(2)
2

is its conjugate momentum.η1(1), ρ1(1) and η1(2), ρ1(2) are the Grassmann odd conjugate
pairs of ghosts corresponding to the constraintsφ1 andφ(2)1 respectively, whileη2(1), ρ2(1) and
η2(2), ρ2(2) are the Grassmann even conjugate pairs of ghosts corresponding to the constraints
φ2 andφ(2)2 , respectively. We proceed directly to the quantized version by introducing the
Schr̈odinger representation. We introduce operatorsXµ, Pν corresponding to the coordinates
xµ, pν , acting on suitable sets of wavefunctions overxµ, and on the half-lineλ > 0. The
Hermitian ghostsηa(i), ρb(j) (a pair of bc systems) are represented as usual either on a four-
dimensional indefinite inner product space|σσ ′〉, σ, σ ′ = ±, or here, in order to match with

† We thank J Govaerts for clarifying possible difficulties with regularity and independence of constraints.
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section 2, in terms of suitable Grassmann variables acting on superfields. The non-zero
commutation relations amongst (79) read (repeated in full for clarity):

[Xµ, Pν ] = −ηµν {ζµ, ζν} = − 2
κ5
ηµν {γ5, γ5} = 2κ5

[λ, πλ] = 1 {λ2, π2} = −1
{η1(i), ρ1(j)} = −δij [η2(i), ρ2(j)] = δij i, j = 1, 2

(80)

from which the algebra of constraints follows:

{φ2, φ2} = −2κ5φ1{φ1, φ2} = {φ1, φ1} = 0. (81)

The hermiticity conditions imposed on the above operators read

X†
µ = Xµ P †

µ = Pµ ζ †
ν = ζν µ, ν = 0, . . . d − 1

ζ
†
0 = −ζ0 γ

†
5 = γ5

λ† = λ π
†
λ = πλ λ

†
2 = −λ2 π

†
2 = π2

(ηa(i))† = ηa(i) (ρa(i))
† = (−1)a+1(ρa(i)) a = 1, 2.

(82)

The ghost number operatorNgh is defined by

Ngh = 1
2

2∑
a,i=1

(ηa(i)ρa(i) − (−1)(a−1)ρa(i)η
a(i)). (83)

The canonical BRST operator† is given by

� = η1(1)φ1 + η1(2)φ
(2)
1 + η2(1)φ2 + η2(2)φ

(2)
2 + 1

2(η
2(1))2ρ1(1). (84)

The gauge fixing operator [19]F which will lead to the appropriate effective Hamiltonian is
given by

F = − 1
2λρ1(1) (85)

and thus the Hamiltonian can be written as

H = −[[F, �]] = − 1
2λ(η

1(2)ρ1(1) + φ1) (86)

which is, of course, BRST invariant.
Consider the following canonical transformations on the classical dynamical variables of

the extended phase space [8]:

η′a(i) = ληa(i)
ρ ′a(i) = 1

λ
ρa(i)

}
a(i) = 1(1), 1(2), 2(1) (87)

λπ ′λ = λπλ + (−η1(1)ρ1(1) + ρ1(2)η
1(2) − η2(1)ρ2(1)) (88)

with the remainder invariant. At the same time we relabel the coordinatesp+ = λ−1 and
x− = λπλλ. At the quantum level the corresponding BRST operator(�′ = η′1(1)φ1 +
η′1(2)φ′(2)1 + η′2(1)φ2 + η2(2)φ

(2)
2 + 1

2(η
′2(1))2ρ ′1(1)) can be written as

�′ = λη1(1)φ1 + η1(2) : λφ(2)1 : +λη2(1)φ2 + η2(2)φ
(2)
2

−λη1(2)η1(1)ρ1(1) − λη1(2)η2(1)ρ2(1) + 1
2λ(η

2(1))2ρ1(1) (89)

where the symmetric ordering

: λφ(2)1 := 1
2(λφ

(2)
1 + φ(2)1 λ) = λφ(2)1 − 1

2λ

has been introduced.

† The criteria for the construction and nilpotency of the corresponding anti-BRST operator�̄ have been given in [23].



Covariant spinor representation ofiosp(d, 2/2) 8521

It is also convenient to define [8] the operatorsθα,Qα, ζ
′
α andζ̃ ′α(α = 1, 2) by

Q1,2 = 1
2
√

2
(2η1(2) ± ρ1(1)) θ1,2 = 1√

2
(±ρ1(2) − 2η1(1))

ζ ′1,2 = 1√
2
(η2(1) ± ρ2(1)) ζ̃ ′1,2 = 1√

2
(±η2(2) − ρ2(2))

(90)

which obey the relations

{Qα, θβ} = εαβ and [ζ ′α, ζ
′
β ] = −εαβ. (91)

In terms of these variables we attain the following simple forms for the BRST, gauge fixing
and Hamiltonian operators:

�′ = 1√
2
(: λφ(2)1 : (Q1 +Q2) + (θ1 + θ2)H + (ζ ′1 + ζ ′2)λ(φ2 +Qαζ ′α) + (ζ̃ ′1− ζ̃ ′2)φ(2)2 )

F ′ = −1

2
ρ1(1) = − 1√

2
(Q1−Q2)

H ′ = −[[F ′, �′]] = −λ
2
(P µPµ +QαQα −M2) ≡ H.

(92)

Note that theζ ′α defined here and theζα defined in section 2.2 differ by a factor
√

2, i.e.
ζ ′α = 1√

2
ζα.

4.2. β-limiting procedure for the BRST operator

It is now necessary to reconcile the development of sections 2 and 3, in which the identical raw
material for construction of the BRST operator, gauge fixing function and hence physical states,
appearspurely algebraically(cf equations (30), (31), (29) with (80)) except for the absence of
theη2(2), ρ2(2) even ghosts and thus theζ̃1, ζ̃2 oscillators. In [8], a somewhat heuristic argument
was provided to justify the restriction to the vacuum of the latter oscillators. Here instead we
shall use what is known as theβ-limiting procedure [14] applied throughout on thea = 2
label of the BFV phase space variables (if we also apply it to thea = 1 label we recover the
Fadeev–Popov reduced phase space quantization scheme). The exposition will closely follow
that of [14].

Consider, instead of (86), the gauge fixing fermion

F = −1

2
λρ1(1) +

1

β
(λ2 − λ0

2)ρ2(2) + λ2ρ2(1) (93)

whereβ is arbitrary, real and Grassmann even andλ0
2 is some given function of time with the

same properties asλ2. The Hamiltonian is thus given by

Heff = [[F, �]] = −1

2
λ(φ1 + η1(2)ρ1(1)) +

1

β
(λ2 − λ0

2)φ
(2)
2 +

1

β
η2(2)ρ2(2)

+η2(2)ρ2(1) + λ2η
2(1)ρ1(1) + λ2φ2. (94)

The equations of motion for the BFV phase space variables can be easily obtained for the above
H by implementing as usual̇A = [[A,Heff ]]. We now change to new variablesπ̃2, ρ̃2(2) such
thatπ2 = βπ̃2 andρ2(2) = βρ̃2(2) and subsitute these intoHeff , � andNgh, the equations of
motion and the action related toHeff . Having done that we take the limitβ → 0; in particular,
the BRST and ghost number operators then become

� = η1(1)φ1 + η1(2)φ
(2)
1 + η2(1)φ2 + 1

2(η
2(1))2ρ1(1) (95)

Ngh =
2∑
i=1

η1(i)ρ1(i) + η2(1)ρ2(2) − 1
2 (96)
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while the equations of motion forλ2, π2, η
2(2) andρ2(2) (which are the ones that are affected

by theβ-limiting procedure) now become

(λ2 − λ0
2) = 0 π̃2 = −φ2 − η2(1)ρ1(1) η2(2) = 0 ρ2(2) = −ρ̃2(2). (97)

Solving these equations and takingλ0
2 = 0, we find that equations (95) and (96) remain as they

are whilstHeff = H . Thus we have succeeded in ‘squeezing out’ the 2(2) pair of even ghosts
together with the odd Lagrange multiplierλ2. Moreover the Hamiltonian in equation (86),
obtained from the admissible gauge fixing fermion given in equation (85), is recovered.

Finally, and most importantly, the canonical transformation in equations (87), (88) is not
affected by this procedure, as can easily be observed. Thus whether we apply the canonical
transformations before theβ-limiting procedure or after does not matter. Consequently, via
equations (87) and (88), equation (95) becomes

�′ = 1√
2
(: λφ(2)1 : (Q1 +Q2) + (θ1 + θ2)H + (ζ ′1 + ζ ′2)λ(φ2 + Qαζα)). (98)

The forms (86) and (98) can now be shown to be identical to the previously given
algebraically defined expressions for these quantities (20), (36). The raw material (30), (31),
(29) also appears in this construction, as can be easily observed by (80), and by identifying
P+ = λ−1, X− =: λφ(2)1 :, ζ− = φ2 +Qαζ ′α and the BRST operator�′ = ηαLα−. Moreover,
the realization ofiosp(d, 2/2) can be done as in (22), (24). In particular, the evaluation of
the BRST cohomology performed in section 3 above, gives precisely the correct identification
of physical state wavefunctions for the spinning particle model of this section, provided that
we representζ ′α by (−1)zζ ′α to account for the correct action on the superfield and the correct
commutation relations ofiosp(d, 2/2). Also, the constantκ5 appearing in (20) can also be
introduced in the third equation of (92) to account forγ5 = ±1, which will eventually appear
in the factorization ofP− leading to the Dirac equation.

5. Conclusions

This paper, via the positive results claimed here for the test case of the spinning particle,
provides confirmation of our programme of establishing the roots of covariant quantization of
relativistic particle systems, in the BRST complex associated with representations of classes
of extended spacetime supersymmetries. Similar examples under study are the ‘D(2, 1;α)’
particle in 1 + 1 dimensions [7], the higher spin-s case and the relation to Bargmann–Wigner
equations, as well as considerations of how the method can be extended to, say, superstring or
superparticle cases, for which a covariant approach has so far been problematical [24]. The
general approach [5,6] is a classification of ‘quantization superalgebras’ in diverse dimensions,
whose representation theory will implement the covariant quantization, in the spirit of the above
example, of the appropriate classical phase space models of systems with gauge symmetries.

Conformal (super)symmetry has long been of interest as a probable higher symmetry
underlying particle interactions, no more so than in the light of recent interpretations of
compactifications of higher-dimensional supergravities [25, 26]. The present application
is of particular interest in that the traditional descent fromd + 2 to d dimensions—via a
projective conformal space [17]—is here implemented not on the cone (massless irreps), but
for the massive (super)hyperboloid. This paper can also be seen as an elaboration of the
method of ‘conformalization’ [27], and as a version of ‘two-time’ physics [28–30]. Beyond
the Dirac equation and higher spin generalizations, it will also be possible to investigate
the algebraic BRST-BFV complex associated with indecomposable representations [31, 32]
(for example, where the vector-scalar (super)special conformal generators are represented as
nilpotent matrices).
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Finally, it is important to point out that the present study has not attempted to settle
the key question of the appropriate inner products for the covariant wavefunctions. Such
further structure is under study, and can be expected to be important for the realization of
modular invariance in the models. Further applications, such as the identification of the correct
supermultiplets to which the scalar and Dirac propagators belong, will provide the rudiments
of a theory of quantized fields at theosp(d, 2/2) level.
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Appendix. (a, b) representation of physical states

Appendix A.1. Preliminary construction

We can define a Heisenberg-like algebra as follows:

[a, b†] = 1= [b, a†]

[a, b] = 0= [b, a]
[a, a†] = 0= [b, b†]

(A.1)

where we can takea|0, 0〉 = 0= b|0, 0〉, and define

|m, n〉 = (a†)m(b†)n|0〉 m, n > 0. (A.2)

Note that this implies

〈0, 1|1, 0〉 = 〈0, 0|b†a|0, 0〉 = 1

〈1, 0|0, 1〉 = 1.
(A.3)

In fact, in general we have

〈m′, n′|m, n〉 = m!n!δm′nδn′m (A.4)

and so we redefine our basis by

|m, n〉′ = a†mb†n|0, 0〉
|m, n〉 = 1√

m!n!
|m, n〉′ = (a†)m(b†)n√

m!n!
|0, 0〉. (A.5)

Appendix A.2. Realization ofζα, ζ̂α

As explained in section 2, the operatorsζα, ζ̃α are constructed using a two-dimensional Bosonic
oscillator algebra(a, b). We choose to defineζα, ζ̃α as follows:

ζα = 1√
2
((b ± a)− (b†∓ a†))

ζ̃α = 1√
2
((a ± b)− (a†∓ b†)).

(A.6)
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At the same time we can define the ghost stateηα of section 4, and its conjugate momentum
ρα as

η1 = i√
2
(a − a†) η2 = i√

2
(b − b†)

ρ1 = 1√
2
(b + b†) ρ2 = 1√

2
(a + a†).

(A.7)

Equation (A.6), together with the spinors used in section 3 allows us to write

(η · ζ ) = i(b − b†) =
√

2η2

(η′ · ζ ) = −(a + a†) = −
√

2ρ2.
(A.8)

In section 3 the eigenstates of(η · ζ )(η′ · ζ ), with eigenvalues̀ were required in the analysis
of the physical states. From equation (A.6) we can write

(η · ζ )(η′ · ζ ) = i(a†b†− ab + ab†− a†b). (A.9)

We have

a†b†|m, n〉 =
√
(m + 1)(n + 1)|m + 1, n + 1〉 (A.10)

and

ab|m, n〉 = b†mab†n

√
m!n!

|m + 1, n + 1〉

= [b, a†m][a, b†n]√
m!n!

|m, n〉

= √mn|m− 1, n− 1〉. (A.11)

Similarly,

a†b|m, n〉 = a†[b, a†m]a†n

√
m!n!

|m, n〉 = m|m, n〉 (A.12)

ab†|m, n〉 = a†m[a, b†(n+1)]√
m!n!

|m, n〉 = (n + 1)|m, n〉. (A.13)

As (η · ζ )(η′ · ζ ) commutes with(a†b − b†a) (the false ghost number), we specialize to
eigenstates|3〉 with m = n

|3〉 =
∞∑
0

3m|m,m〉. (A.14)

Therefore,

(η · ζ )(η′ · ζ )|3〉 = i(a†b†− ab + ab†− a†b)|3〉

= i
∞∑
m=0

[(m + 1)3m|m + 1, m + 1〉 −3m|m,m〉 −m3m|m− 1, m− 1〉]

= i[30|1, 1〉 −30|0, 0〉 + 231|2, 2〉 −31|1, 1〉 −31|0, 0〉
+332|3, 3〉 −32|2, 2〉 − 232|1, 1〉 + · · ·]
= i[−(30 +31)|0, 0〉 + (30 −31− 232)|1, 1〉 + (231−32 − 333)|2, 2〉

+ · · · + (m3m−1−3m − (m + 1)3m+1)|m,m〉 + · · ·]
= 3(30|0, 0〉 +31|1, 1〉 + · · · +3m|m,m〉 + · · ·

and so

−i(30 +31) = 330

i(30 −31− 232) = 331

i(231−32 − 333) = 332
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or in general

i(m3m−1−3m − (m + 1)3m+1) = 33m. (A.15)

Re-expressing these in terms of3 and30 only we get

31 = (i3− 1)30

32 = − 1
2(3

2 + 2i3− 2)30

33 = 1
6(−i33 + 332 + 8i3− 6)30

34 = 1
24(3

4 + 4i33− 2032 − 32i3 + 24)30

35 = i

120
(35 + 5i34 − 4033− 100i32 + 1843 + 120i)30

(A.16)

and so on.
It is easy to write a short program to generate3m to any order.
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